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Abstract-An analysis of a simply supported rectangular elastic plate forced into bending vibrations
by the application of time harmonic voltages to piezoelectric actuators attached to its bottom and
top surfaces is performed by using the equations of linear elasticity, The actuators have been
modeled as thin surface films and mixed edge conditions are employed to simulate simple supports.

I, INTRODUCTION

Elastic plates with piezoelectric films attached to them have been of great interest because
of their use in smart structures, Most analytical analyses were based on various approximate
two-dimensional plate theories [see e.g. Tauchert (1992), Tang and Xu (1995) and Mitchell
and Reddy (1995)]. The method of Fourier series has been used in analyzing deformations
of elastic plates when three-dimensional equations of elasticity are used (Srinivas et at.,
1970; Wittrick, 1987). The boundary conditions of a simply supported plate characterized
by the vanishing of the deflection and bending moment at the edges translate into mixed
boundary conditions. Here the Fourier series method is employed to analyse the time
harmonic bending vibration of a simply supported rectangular elastic plate with pie­
zoelectric actuators bonded to its bottom and top surfaces. The elastic plate can be lami­
nated and made of orthotropic or isotropic materials. The piezoelectric actuators are
modeled as thin films (Tiersten, 1993) as in a recent paper by Zhou and Tiersten (1994) on
the cylindrical bending of an elastic plate with piezoelectric actuators. The analysis per­
formed here can be considered as an extension of the Fourier series analysis on the
cylindrical bending vibrations of a laminated elastic plate under piezoelectric actuators
(Yang et at., 1994).

2. FORMULAnON OF THE PROBLEM

2.1. Governing equations
We consider an N-layer laminated elastic plate of dimensions a and b in XI and X 2

directions and total thickness 2h, with piezoelectric film actuators attached to its bottom
X3 = -h, and top X3 = h (Fig. 1) surfaces. The positions of the bottom and top surfaces
as well as of the N - 1 interfaces between the laminates are denoted by h(O) = - h, h(l),
h(2), ,h(N-l), h(N) = h; the ith elastic layer is determined by h(i- I) < X3 < h(i), where i = 1,
2, , N. We use a superscript i in parentheses to indicate quantities of the ith layer.
Equations expressing the balance of linear momentum are
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Fig. 1. A N-Iayer rectangular elastic plate with piezoelectric actuators at the bottom and top.

(1)

where r~fr is the stress tensor, u~) the displacement vector and p(i) the mass density of the
material of the ith layer. Here we have used a fixed set of rectangular Cartesian axes, a
comma followed by the index f3 implies palJial differentiation with respect to xp, a super­
imposed dot signifies partial differentiation .with respect to time t, and a repeated index
implies summation over the range of the index. Each layer is assumed to be made of an
orthotropic material with constitutive equations

r~)3 = c~1(U~~3 +U~~2)

r~)l = c~Vu~\ +U\03)

(2)

which includes isotropic materials as special cases. Here Cl], CI2 ... , etc. are the elasticities
of the orthotropic material. The boundary conditions at the edges of the simply supported
plate are taken to be

r~i = 0, u~) = 0, U\i) = ° at X2 = O,b. (3)

We note that the above boundary conditions are for the case when the plate is viewed as a
three-dimensional body. They simulate a simply supported plate characterized by the
vanishing of the deflection and bending moment at the edges. Boundary conditions such as
eqn (3) have been used by Srinivas et al. (1970) and Wittrick (1987) to simulate simply
supported plates. At the interface X3 = h(i) between the ith and the (i+1)th layers, we have
for i = 1, 2, ... , N - 1

(4)
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The substitution of eqn (2) into eqns (1), (3) and (4) yields equations of equilibrium and
boundary as well as interface conditions in terms of displacements:

c\l)j uV\ I + c~~U\'\2 + c~i1u\':33 + (c\'~ + CmU~~12 + (C\1)3 + c~1)u~~13 = p(IJ a\1)

(c\'J2+ CmU\':12 + C~J6U~:11 + C~~U~~22 + C~1U~:33 + (c~1 + CmU~:23 = p(IJii~J

(C (IJ +c(l))u('J + (C(i) +c('))u(i) +c(l)u(i) +c(l)u(1) +c(i)u(i) - p(i)u··(I)13 55 1,13 23 44 2,23 55 3.11 44 3,22 33 3,33 - 3

and

c\'1 U\':I + c\I~U~~2 +CnU~:3 = 0, u~) = 0, u~J =° at XI = 0, a

c\'~U\i~1 +C~~U~:2 +C~J3U~\ = 0, u~) = 0, U\i) =° at X2 = O,b

c~1(u~\ +U\':3) = c~tl)(U~,tl)+U\i,11)) at X3 = h(1)

C~1(U~:3 + U~~2) = c~t 1)(u~,11) +u~y») at X3 = h(1)

(5)

(6)

Usually the piezo ceramic actuators are quite thin as compared to the laminate and therefore
can be modeled as thin films (Tiersten, 1993). We use a superscript b to denote quantities
for the bottom actuator. For the bottom actuator of thickness hb

, the balance of linear
momentum yields

(7)

Polarized ceramics, poled in X3 direction, can be modeled as transversely isotropic
materials with the x3-axis as the preferred direction; their constitutive equations which
satisfy the charge equation of electrostatics to the lowest order are (Tiersten, 1993)

where

r~l = c~ IUtl +c~2ub-e~IE~ = c~ luL +CLUt2 -e~1 Vb(t)/h b

r~2 = c12UL +c~ lub -e~IE~ = c~2uL +c~ IUt2 -e~1 Vb(t)/h b

r~2 = d6(Ut2 +uL)

C~ I = d I -d3C~3/d3 = s~ ,/A, C~2 = d2 -C~3C~3/d3 = s~2/A

e~l = e~l-d3d3/d3 = d~l/(s~1 +S~2)' A = S~IS~I-S~2S~2

(8)

(9)

and we have set E~ = Vb(t)/h b where 0'(t) is the applied voltage which is a function of
time t only. The edge conditions for the bottom actuator are

r~ I = 0, u~ =° at XI = 0, a

r~2 = 0, u~ =° at X2 = 0, b.

In terms of displacements, eqns (7) and (10) become

hb-b b +hb b b hb(-b b ) b (1)( (I) (1»)\ bhb ··bCIIUl,ll C66 UI,22+ C12+ C66 U2,12+ C55 U3,I+UI,3 x3=-h=P Uj

(10)
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hbC~IUL =e~IVb(t), u~ =0 at Xl =O,a

hbC~lUb =e~lVb(t), u~ =0 at X2 =O,b. (11)

Similarly, for the top actuator with thickness h' and applied voltage V'(t) we have

(12)

where a superscript t denotes quantities for the top actuator, and we have set
E~ = V'(t)/h'.

The additional boundary conditions at the bottom surface X3 = -h and top surface
X3 = h of the plate are given by

(13)

or, in terms of displacements

CWU\l,l +cWu~:l+CWU~l,~ = pbhba~l), U\l) = u~, U~I) = u~ at X 3 = -h

-(c\~)u\~?+c~~)u~~d+c~~)u~~D= p1h'a(fl), U\N) = u\, u!j') = u~ at X3 = h.

(14)

The problem we need to solve consists of eqns (5), (6), (11), (12) and (14), with
unknowns U\i)(X\oX2,X3,t), u~)(X]'X2,X3,t), u~)(X]'X2,X3,t), U~(X]'X2,t), U~(X]'X2,t),

u\ (XI> X2' t) and u~ (XI, X2, t).

2.2. Time harmonic vibrations
We consider vibrations of the plate under time harmonic driving voltage

(15)

in which J7h and V' are constants, and restrict ourselves to steady state vibrations for which
all field quantities have the same time dependence

(16)

Henceforth, we drop the superimposed tildes. Substitution of eqn (16) into (5), (6), (11),
(12) and (14) yields
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C~)5(U~:1 +U\i~3) = c~tl)(U~,tl)+U\i,11)) at X3 = hU)

C~~(U~:3+U~:2) = c~tl)(u~,11)+U~,11)) at X3 = hU)

c(I)U U) +c(l)u(1) +c(l)u(1) -CU+I)UU+I)+CU+I)UU+I)+CU+I)UU+I) at X3 =h(')13 1,1 23 2,2 33 3,3 - 13 \,1 23 2,2 33 3,3

h'c- ' u' +h" I +h'(c-' +c' ) I (N)(U(N) +u(N))1 -p'h'W2U'111 I,ll C66 UI,22 12 66 U2,12- C55 3,1 1,3 x3~h =

(18)

(19)

(20)

cWu\~l +cWui~~ +cWu~~~ = -pbhbw2u~ll, U\l) = uL uil
) = u~ at X3 = -h

-(c\~)u\~?+ci~)ur.d+c~)u~~l)= -p'h'w 2url, U\N) = u t
], uiN ) = u~ at X 3 = h.

(21)

3, SOLUTIONS

3,1. Solutions for the laminates
We assume that displacements of the ith layer can be represented as Fourier series.

That is

ex;

u~1) = L a~n(x3) cos IXmX I sin PnX2
m,n=l

00

(,) - " bU) ( ) , (IU2 - 1... mn X3 SlnIXmXICOSpnX2
m,n=1

IXm = mn/a, Pn = nn/b (22)

which ensures that all homogeneous boundary conditions in eqn (17) at the edges XI = 0,
a and X2 = 0, b are satisfied. The substitution ofeqn (22) into eqn (17) 1-3 yields the following
ordinary differential equations

_(C(I) +c(I))", a(1) -(c(1) +C(I))R b(i) -C(1)1X 2 C(1) -cU) R2 C(I) +c(l)c(1) = -pU)W 2CmU)n'13 55 "'m mn,3 23 44 Pn mn,3 55 m mn 44Pn mn 33 mn,33
(23)
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In order to find a solution of (23), we let

(24)

where A~", B~", C~" and Yf~" are undetermined constants. Substitution ofeqn (24) into eqn
(23) yields the following homogeneous linear equations for the determination of A~", B~"
and C~"

(25)

or

(26)

where

(27)

Note that all the lambdas should also have the subscripts mn and superscript i in
parentheses-we omit them for simplicity. Equations (26) have nontrivial solutions only if
the determinant of the coefficients matrix vanishes. This results in the following cubic
equation for ('1 ~") 2

(28)

where

b - 1 (2 1 1 1 1 2 1 • 2 1 1 2 (i) + (i) 1 • + (I) 1 1 + (I) 1 1 )
- 11.1211.1311.23 -11.2311.11 -A I 311.22 -1I.12 C 33 C3311.11 A22 C5511.2211.33 C4411.1111.33

C
(I) c(i) C(l)
33 44 55

(29)

With
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a
Y = (1];;{nf + "3

the three roots of (28) are given by (Wang, 1987)

1603

(30)

(31)

YI = {- ~ +[(~)2+ (})3l /2}1/3+ {_ ~ _ [(~)2~ (})3l/2}1/3

Y2 = WI {- ~ +[(~)2+(~)3l/2} 1/3 +W2 {- ~ - [(~)2+(~} l/2} 1/3

Y3 = W2 {- ~ +[(~)2+(~)3lI2 }1/3 +WI {- ~ - [(~)2+(~)3lI2} 1/3 (32)

where

(33)

Corresponding to eqn (32) there are six roots for '1 ;;{n, which can be real or complex.
When a particular root 1] ;;{np with fixed p is real, from eqn (26) (lines 1 and 2) we obtain
that the solution to eqn (23) corresponding to this particular 1] ;;{np is

a;;{n(X3) = D ;;{npF;;{np(x 3 )

b;;{n(X3) = D ;;{npG ;;{np(X3)

e;;{n(x3) = D;;{np H;;{np(X3)

where D ;;{np is an arbitrary constant, and

(34)

-Al2 \ (I)e11mnpX}

e(1) (n(1) )2_ A44 '/ mnp 22

I

e (i) ( (i) ) 2 A
(i) _ 55 1] mnp - II

H mnp(X3 ) -

-A12

-A 12 I (,J
e(I)(",(1) )2_

A
e"mnpx

J
•

44 ./ mnp 22
(35)

When a particular 1];;{np is complex, its complex conjugate is also a root. We write one
of this pair of roots as ",(I) = J'(l) +ir(l) where J'(i) and r(1) are real and J'(i) may be"' mnp S nmp ~ nmp' S rnnp ':t mnp S mnp

zero but (;;{np may not. From eqn (26) (lines 1 and 2) there are two sets of solutions to eqn
(23) corresponding to this pair of complex conjugate roots. They all can be written in the
form of eqn (34), with

F(') (x ) = cos r(') x e~~)npxJ
mnp 3 '::. mnp 3

G (i) (x ) = (y cos r(1) x - y sin r(il x )e~~np-'Jmnp 3 II <"mnp 3 21 ~mnp 3

(36)

and
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respectively, where

[

YII

Y21

Y31

Y41
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G (I) (x) - (-", cos Y(i) X +" s\'nr(i) X )e~~1"pX3mnp 3 - r 1 2 l:, mnp" 3 I ,., 2 2' '=' mnp" 3

H(i) (x ) = (-y COS r(i) X +,. sin r(i) X )e~~~pxJ
mnp 3 32 Smnp· 3 142 Smnp" 3 (37)

o
A I 2

- 2C44~~~p'~np )'23 ~ ~np

A23'~np

-A23'~np

A23~~np

-1

-2C55~~~p'~np ]

c" r«;~",,)' -~(:2.,)'1-." . (38)

A I2

We note that there can be a few values of w which make q2 /4 + p3 /27 = O. In that case,
eqn (28) has repeated roots for (rJ~n)2 and the solution to eqn (23) needs special discussion.
This is likely to be the case when each of the laminate is made of an isotropic material. We
will not consider these special values of w. The general solution to eqn (23) can therefore
be written as

6

(i) ( ) - "D (i) F(i) ( )amn X3 - L,; mnp mnp X 3
p~1

6

b (i) ( ) - " D (I) G (i) ( )
mn X3 - ~ mnp mnp X3

p~1

6
(i) ( ) - " D (i) H(i) ( )C mn X3 - L- mnp mnp X3

p~1

(39)

where D ~np are undetermined constants. The displacements and stresses can then be written
as
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L (i) ( ) - (I) F(I} () (i) f3 G (i) ( ) + (I) H(I} ( )mnp X 3 - -C I 2 OC m mnp X3 -Cn n mnp X3 C23 mnp,3 X3

P (i) ( ) _ (i) F(l) () (i)f3 G(I) ( )+ (I}H(I) ( )mnp X 3 - -C 13 OCm mnp X3 -C23 n mnp X 3 C33 mnp,3 X3

Q},',lnp(X 3) = c~Hf3nH},',lnp(X3) +G},',lnp,3(X3)]

R},',lp(X3) = diHocmH~!np(x3)+F~~p,3(X3)]

1605

(40)

T},',lnp(X3) = cmf3J},',lnp(X3)+OCmG},',lnp(X3)]' (41)

Substitution of eqn (40) into the interface continuity conditions [eqn (18)] at X3 = h(l)
for i = 1, 2, ... , N - 1 yields

6 6
'" D(i) F(I} (h(l}) = '" D(i+I)F(i+l)(h(i»L... rnnp mnp L... mnp mnp
p~l p~l

6 6
'" D(') G(l) (h(i» = '" D(i+l)G(i+l)(h(i»)L... mnp mnp L... rnnp mnp

p= I p= I

6 6
'" D(i) H(i) (h(i» = '" D(Hl)H(i+l)(h(i»)L... mnp mnp L... mnp mnp

p=l p~1

6 6
'" D(i) R(i) (h(i» = " D(i+I)R(Hl)(h(i»)L... mnp mnp 1...J mnp mnp

p=l p=1

6 6
" D(I} Q(i) (h(l}) = '" D(i+l)Q(i+l)(h(i»)L... mnp mnp L... mnp rnnp

p= I p~l

6 6
" D(i) p(1} (h(i») = " D(i+l)p(i+l)(h(l})1...J mnp mnp L.. mnp mnp

p=! p=l

(42)

which can be written in the following matrix form

D},',lnl

D},',ln2

D},',ln3

D(I}
mn4

D(i)
mn5

D(i)
nm6

where [T](i) is a transfer matrix given by

D(Hl)
mnl

D(i+l)
mn2

D(i+l)
mn3

D(i+l)
mn4

D(i+l)
mn5

D(i+!)
mn6

(43)
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P}2n4(h(i» P}2n5(h(i» F~~6(h(i»
-I

P~)nl (h(i» P}2n2(h lO ) P}2n3(h(i»

G }2nl (hC0) G}2n2(h lO ) G ~:n3 (h ll) G}2n4(h(i» G}2ns(h(l) G}2n6(h(i»

H;;;'I!(h(i» H}2n2(h(i» H}2n3(hCi) H}2n4(h lO ) H}2n5(h(i» H}2n6(h(i»

R}2nl (h(I) R}2n2(h(i» R;;;"3(h(i» R }2n4 (h(i» R }2ns (hC0) R}2n6(h(i»

Q}2nl (h(i» Q}2n2(h(i» Q}2n3(h lO ) Q}2n4(hC°) Q}2ns(h lO ) Q}2n6(h(i»

P ~:n I (hC0) P}2n2(h(i» P }2n3 (h(i» P}2n4(h li) P}2n5(h(i» P ~:n6 (h(i»

P~~ll)(h(i» P~~21) (hC0) F~~31)(h(i» F~~P(h(i» F~~SI)(h(i» F~~61)(hlO)

G~~II)(hlO) G~~21)(h(i» G~~31)(hli) G~~41)(h(i» G ~~Sl) (hC0) G~;;61)(h(i»

H~~ll)(h(i» H~~21)(h(i» H~~31)(hC0) H~~41)(h(O) H ~~51) (hCi) H~~61)(hC0)

X
R~~II)(hC0) R~'~21)(hCi) R~~31)(h(i» R~~41)(h(i» R~~SI)(h(i» R ~~61) (h (i»

Q~~ll)(h(i» Q~~21)(h(i) Q~~31)(h(i) Q~'~41)(hCi) Q~~51)(h(i» Q~~61)(h(i»

P~~II)(h(I) P~~21)(hCi) P~~31)(hli) P~~41)(h(i» P~~sl)(h(i» P~~61)(h(i»

(44)

With repeated use ofeqn (43), we obtain

D~'~I
D(N)mnl

D(I) D(N)
mn2 mn2

D(I) D(N)mn3
= [T](I)[T](2) ... [T](N-l)

mn3
(45)

D(I) D(N)
mn4 mn4

D (I). D(N)mn) mnS

D(l) D(N)
mn6 mn6

which will be needed later. With eqns (40) and (45), eqns (17) and (18) are satisfied.
However, eqns (19)-(21) still remain to be satisfied.

3.2. Solutions for the actuators
For the bottom actuator governed by eqn (19), we assume that

oc

u~ = I D Ln cos iY-mX I sin Pn X2
m.n=l

00

u~ = L D ~mn sin iY-mX I cos PnX2
m,n= I

(46)

where D ~mn and D ~mn are undetermined constants. Equations (46) satisfy the two homo­
geneous displacement boundary conditions in eqn (19). It may seem that, after term by
term differentiation, eqn (46) can not accommodate the two nonhomogeneous boundary
conditions in eqn (19). This is not the case because the Fourier series [eqn (46)] for this
situation with nonhomogeneous boundary conditions generally do not have the uniform
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convergence needed for term by term differentiation (Zauderer, 1983). To avoid term by
term differentiation and to take care of the nonhomogeneous boundary conditions at the
same time, we multiply eqn (19)1 by COSrtmX. sinp"x2 and integrate the resulting equation
over 0 < XI < a and 0 < X2 < b. With integration by parts we obtain

where the nonhomogeneous boundary condition in (19h has been used. Equation (19)1
then becomes

6

" R(l) ( h)D(I) +hb(pb 2 -b 2 b P2)DbL. mnp - mnp ill -Cllrtm- C66 n Imn
p=1

4 -b T"Tb
b -b b b e3 I V m n

-h (CI2+C66)rtmPnD2mn= abPn [(-1) -1][(-1) -1]. (48)

In a similar way, we multiply eqn(19)2 by sin rtmXI cos PnX2 and integrate the resulting
equation over 0 < XI < a and 0 < X2 < b to obtain

6

L: Q~~p( -h)D ~~p -h
b
(ct2 +d6)rtmPnD tmn

p=1

where the nonhomogeneous boundary condition in eqn (19)4 has been used. For the top
actuator, we assume

00

u; = L: D;mn cos rtmXJ sin PnX2
m,n=l

00

u~ = 1: D ~mn sin rtmXI cos PnX2
m,n=l

(50)

which satisfy the two homogeneous boundary conditions in eqn (20)3.4. By employing the
technique similar to that used to obtain eqns (48) and (49), the remaining expressions in
eqn (20) are satisfied if
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6

L R~1(h)D ~1 +ht(ctll a~ +C~6P~ - ptw 2)D limn +h l(CI12 +c~6)amPnD 2mn
p~l

4e' V'
= __31_[(_l)m_1][(_1)"_1]

abp"
6

I. Q ~(h)D ~1+h l(CI12 +c~6)amP"D ~m" + hl(c~6a~, +C; I p~ - p'w 2)D 2mn
p~l

4e' V'
= __31_[(_l)m_1][(_1)"_1]. (51)

abam

With eqn (46) and eqns (48)-(51) all of the expressions in eqns (19) and (20) are
satisfied. We are left with eqn (21) only.

3.3. Continuity conditions between the plate and actuators
The continuity conditions [eqn (21)] at the interfaces between the plate and the

actuators become, upon substitution of eqns (40), (46), and (50)

6

I. [P~~p( -h) + pbhbw 2H~~,~p( - h)]D ~~,~p = 0
p=l

6

L F~~p( -h)D~~p-Dtlll = 0
p=1

6

I. G~~p(-h)D~~p-D~m" =0
p~l

6

" [PiN) (h) _p lh'w 2H(N) (h)]D (N) = 0L... mnp mnp mnp
p=l

6

" F(N) (h)D (N) D t - 0L... mnp mnp - Imn-
p~1

6

L G~1(h)D~~1-D2mn = O.
p~1

(52)

Thus we have satisfied all the governing equations and boundary conditions, eqns
(17)-(21). In summary, for fixed m and n, we need to solve the following system of sixteen
equations obtained from eqns (45), (48), (49), (51) and (52)

6
" R(l) ( h)D(I) hb ( b 2 -b 2 h R2)Db hb(-h h) R DbL. mnp - mnp+ P W -Cll!.Xm-C66f'" Im,,- C12+ C 66 'Y.mf'" 2mn
p~l

4e h Vh

= 31 [(-l)m-l][(-l)"-l]
abp"

6
"Q(I)( h)D(1) hb(-b ,b) RDbL. m"p - mnp- CI2 +C66 'Y.mf'" 1m"
p~l
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6

L: R ;:n~(h)D;:"~ +hI (ell Iet; + C~6f3 ~ - plw 2)D \mn +hI (e\ 2+ C~6)etmf3nD imll
p~1

1609

4e' VI
= -~31~[(-l)m-l][(-1)n-l1

abf3n

6

'" Q(N) (h)D (N) +hl(-I + I) 13 D' +h l( I 2 + -, 13 2 I 2)D IL. mnp mllp C I 2 C 66 etm 11 ! mll C 66 et m C ! I n - P w 2mn
p=l

4e' VI
= -~31~[(-1)m-l][(-1)n-l1

abetm

6

L: [P~~p( -h) + p b hb w 2
H~~p( - h)]D ~~p = 0

p=!

6

L: F~~p( -h)D~~p-D~mn = 0
p~1

6

L: G~~,~p(-h)D~~p-D~mn = 0
p~1

(53)
6

'" [P (IV) (h) _ pIhlw 2 H (IV) (h)]D (N) = 0L rnnp mnp mnp
p~1

6

L: F~:"~(h)D ~~~ - D limn = 0
p~1

6

'" G (N) (h)D (N) D I - 0L mnp mnp - 2mn-
p=1

D~~2

D~~3

D(I)mn4
D(I)mnS

D(')mn6

D(N)
mn2

D(N)mn3

D(N)mnS
D(N)mn6

for the sixteen unknowns D ~~P' D ~~~, D tnn, D ~mn, D \mm and D imn. We note that the solution
is nontrivial only when m and n are both odd, representing deformations symmetric about
XI = al2 and X 2 = b12. The vanishing of the determinant of the coefficient matrix of eqn
(53) determines the resonance frequencies for the free vibrations of the system.

3.4. Plate with one actuator
If there is only one actuator, for example, affixed to the top surface of the plate, the

boundary conditions at the bottom surface of the plate should be the vanishing of
-rW, -rW and -rW. We then have the following fourteen equations

6

'" R(l) (-h)D(I) = 0L mnp mnp
p=!

6

'" Q(I) (-h)D(I) = 0L mnp mnp
p~1
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6

L R <:n~(h)D <:n~ + h'(C'11 <X~ +C~6,B~ - p'wZ)D 'Imn + h'(C'IZ + c~6)<Xm,BnD ~mn
p~1

4e' V'= __31_[(_1)m_1][(_W_1]
ab,Bn

6

L Q~(h)D~ +h'(C'12 + C~6)<Xm,BnD 'Imn +h'(C~6<X;'+C'II,B~ - p'wZ)D ~mn
p=1

4e' V'= __31_[(_l)m_1][(_1)n_1]
ab<Xm

6

L [P~2P( -h) +pbhbw ZH~2p( -h)]D ~2p = 0
p~l

6

" [P(N) (h)-p'h'wZH(N) (h)]D(N) = 0L... mnp mnp mnp
p=1

6

L F<:n~(h)D <:n~ - D 'Imn = 0
p=1

6

L G <:n~(h)D <:n~ - D ~mn = 0
p~1

(54)

D(I)mnl
D(N)mnZ

D(l)mn3
D(I)mn4
D(I)

mn5
D(I)mn6

D (N)
mn3

D(N)
mn4

D(N)
mn5

D(N)mn6

for the fourteen unknowns D ~2p, D <:n~, D 'Imn, and D'lmn'

4. NUMERICAL RESULTS

As an example, we consider a graphite-epoxy plate with PZT-Gl195 actuators affixed
on the top and bottom surfaces. The material parameters for the graphite-epoxy are

Ell = 1500 GPa, Ezz = E33 = 9 GPa, V12 = VZ3 = V13 = 0.3, (55)

G1Z = G31 = 7.1 GPa, GZ3 = 2.5 GPa, p = 1600kg/m 3
,

and those for the PZT-Gl195 are

0 0 -2.1 T

0 0 -2.1

eb = e' =
0 0 9.5 C

0 9.2 0 m Z

9.2 0 0

0 0 0
148 76.2 74.2 0 0 0

148 74.2 0 0 0

cb = c' =
131 0 0 0

Symmetric 25.4 0 0

25.4 0

35.9
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(56)

For geometric dimensions, we choose a = 8 em, b = 8/ficm, 2h = 0.2 em, hb= hi = 0.02
em. We also choose V' = - V' = 50 V. We note that the analysis presented above is valid
for a laminated elastic plate. However, there is only one lamina in the example considered to
facilitate the interpretation of computed results.

The structure has a series of natural bending vibration frequencies which can be
ordered as W mm m, n = 1,2,3, .... The free bending vibration modes corresponding to WII,
W31> W13, W33, ... are symmetric about both XI = a/2 and X2 = b/2 and those corresponding
to W12, W21> W22, ... are antisymmetric about either XI = a/2 or X2 = b/2, or both. Only fully
symmetric modes can be excited in our problem because of the symmetry of the structure
and the loading conditions. The natural frequencies of the structure can be roughly esti­
mated from the results of the plate theory. When the inertia and rigidity of the actuators
are neglected, we have (Jones, 1975)

or

= ![ 2(~)1/2 ~J~ [4 (~)2(D12+2D66) 2 2 (~)4(D22 4)JI/2
Q mn W mn I n 2 h ~ m +2 b D m n + b D n

I P a 2
II II

(58)

where D,p = E,p(2h)3/12(l-v2), IX, f3 = I, 2, 6 is the flexural rigidity and Q mn is the nor­
malized natural frequency. From eqn (58) we obtain

(59)

We plot IU3(a/2, bf2,O)1 = IU3(a/2,b/2,0)lheIJlh b/a 2elJl V, the normalized deflection of
the centroid of the plate, as a function of the normalized forcing frequency

I[ (DII)I/2 1JQ=w n 2
- -

2ph a 2

in Fig. 2. It is seen that U3(a/2, b/2, 0) becomes large at certain discrete values ofQ, which
signifies the resonance phenomenon. Those values of Q at which resonances occur should
be in the sequence QII> 0 31> Q13, Q33, .... The values OfQII, Q31, Q13, and Q33 shown in Fig.
2 are Q II ~ 1.612, Q31 ~ 7.685, Q 13 ~ 8.365 and Q33 ~ 12.738. These values differ noticeably
from those listed in eqn (59). That this difference is caused by the presence of actuators
was verified by reducing the elasticities, mass density and the thickness of the actuators by
104, 105 and 103, respectively. For this case, the computed resonance frequencies equalled
1.296,4.826,8.697 and 10.965, respectively which are close to those listed in eqn (59). In Fig.
2, only the locations of the peaks are important which determine the resonant frequencies of
the system. The relative magnitudes of the peaks depend on how close the sampling points
of Q are to the exact values of Q mn when the curve is computed.

Normalized deflection of the middle surface U3(X"X2,0) = U3(XI,X2,0)
heIJ I hb/a2eIJ I V, normalized shear stresses at the interface between the top actuator and the
plate T31(Xt.X2,h) = !31(Xt.X2,h)hb/eIJI V and T32(xt.X2,h) = !32(XI,X2,h)h b/e!JI V are
plotted in Figs 3-5, respectively, for 0 near QII' Similar results for Q near Q31 are plotted
in Figs 6-8, for Q near Q 13 in Figs 9-11, and for Q near Q33 in Figs 12-14.

Under a particular forcing frequency Q, all of the fully symmetric free vibration
modes may be excited. But when Q is close to a particular resonant frequency, the mode
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(11.6952)

I
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15o 5 10

NORMALIZED FREQUENCY

Fig. 2. The normalized deflection of the centroid IU, (aI2, b/2, 0) I = lu] (aI2, b12, 0) Ihc'Lhb /a'e'3, Vas

a function of the nondimensional forcing frequency n = w/(rr'(DI2ph)'!' lla').
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-10

-15
(")

:l -20

-25

-30

x1 x2

0.06

Fig. 3. The deflection surface UJ(x" x" 0) for n near nil'

corresponding to that resonant frequency has a dominant contribution to the deflection of
the plate. The Fourier series converges very fast. When n is near nIl' n3b nl3, or n33, at
most 20 terms are needed for u3(a/2, bj2, 0) to have four significant digits. When n is higher,
higher order modes also become important hence more terms are needed in the series. For
all of the results presented herein, eight hundred terms in the Fourier series are summed to
ensure sufficient accuracy.
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Fig. 4. The normalized shear stress T" (x I' x" II) = III (x I ' x" II )Il! e'; I J7 under the top actuator for
n near nil'
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Fig. 5. The normalized shear stress T" (XI' x" il) = I;, (XI' X" il)llle'; I J7 under the top actuator for
n near nil'

It can be seen that for vibrations in modes 11, 3L 13 and 33, the normalized shear
stress T 31 (x], Xl, h) or T32 (x I' Xl, h) at points on the interface between the top actuator and
the plate surface is mainly concentrated in a narrow region near the edges. This is similar
to the results for beams computed by Hanagud and Kulkarni (1992) by the two-dimensional
finite element method and by Zhou and Tiersten (1994) and Yang et al. (1994), who used
the two-dimensional elasticity theory. In the approximate plate theory, these shear stresses
have delta function distributions (Zhou and Tiersten, 1994). The finite element method
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Fig. 6. The deflection surface UJ(x" x" 0) for Q near QJI'
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Fig. 7. The normalized shear stress T J, (x" x" h) = T31 (x" x" h)hbIe'" j7 under the top actuator for
Q near Q31'

usually predicts a more gradual change of the shear stress distributions which is determined
by the element size and the interpolation functions used (Hanagud and Kulkarni, 1992).
The results by Fourier series sometimes have slight oscillations in the shear stress dis­
tribution near the edges (Zhou and Tiersten, 1994), which looks like the Gibbs phenomenon
of a Fourier series near a jump discontinuity.

5. CONCLUSIONS

We have presented a Fourier series analysis of the vibrations of an elastic rectangular
plate forced by piezoelectric actuators under time harmonic electric voltage. The solution
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Fig. 8. The normalized shear stress T32 (x" x" h) = '32 (x" X2' h)hb/t!3, V under the top actuator for
o near 0 3"

1615

0.04

0.6

0.4

0.2
C')
:::)

0

-0.2

-0.4
0

0.04

0.02

xl

0.08

x2

Fig. 9. The deflection surface U3(x" x" 0) for 0 near 0 13 ,

is exact within the linear theory of elasticity. The Fourier series converges rapidly in the
numerical example studied. For the graphite-epoxy plate with actuators attached to its top
and bottom surfaces, it is shown that the normalized shear stress at the interface between
the plate and an actuator is essentially zero except in very small regions near the edges for
vibrations of the plate in modes 11, 13, 31 and 33. The computed natural frequencies for
the orthotropic plate are found to be close to those estimated from the plate theory.
However, PZT attached layers to the top and bottom surfaces of the plate shift noticeably
the natural frequencies of the plate.
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